

#### LA-UR-19-20325

Approved for public release; distribution is unlimited.

Title: Active Neutron Measurement Techniques

Author(s): Root, Margaret A.

Intended for: Nuclear Safeguards Course

Issued: 2019-01-17





# Active Neutron Measurement Techniques

**SEE LANL** 

January 23-25 2019



## Processes that generate neutrons



#### Fission

- Spontaneous
  - Nucleus splits all by itself, randomly
  - <sup>238</sup>U, <sup>238</sup>Pu, <sup>240</sup>Pu, <sup>242</sup>Pu, Cm, Cf
- Induced
  - Heavy isotope absorbs neutron, causing it to split → Multiplication
  - 235U, 239Pu, 233U
- Bursts of 0-8 time-correlated neutrons emitted
- $\bullet$  ( $\alpha$ ,n) reactions
  - Helium nucleus reacts with light element nucleus, generating a <u>single</u> neutron and a new light element
  - Neutron emission depends on item composition
- Less common reactions
  - Cosmic rays, (n,2n), (p,n), (γ,n) UNCLASSIFIED









## **Neutron Signatures**













#### **Basic neutron interactions**

# Los Alamos NATIONAL LABORATORY

#### Scattering

Neutron collides with a nucleus,
 causing neutron's speed and direction
 to change, but leaving the
 properties of the nucleus the
 same as before the interaction



#### Moderation

- Neutron scattering process by which a neutron collides with matter and loses energy
  - i.e. 2 MeV to 0.025 eV
- Best moderation when neutron collides with nuclei of similar mass
  - e.g. Water, polyethylene, other hydrogenous materials, m<sub>H</sub>~m<sub>n</sub>

#### Absorption

- Neutron is absorbed, yielding an excited nucleus, which de-excites through the release of something else, like a proton or a gamma ray
  - e.g. (n,γ), (n,p), and fission reactions.



## Why measure neutrons?



- Neutron rates are related to the amount of fissionable material. (Pu, U, etc. – what we need to safeguard)
- Highly penetrating.
  - Low rate of interaction with matter.
  - Can measure entire volume of item.
  - Can measure large-volume items. Gamma rays are limited (typically) to smaller items. ("Skin thickness")
- Insensitive to interference by other gamma-emitting radionuclides (unless a (γ,n) source)



# Neutron detector design





- Uses <sup>3</sup>He tubes embedded in moderating material (polyethylene).
  - Fission neutrons emitted at MeV energies
  - 3He tubes are most sensitive to low energy "thermal" neutrons E<sub>ave</sub> ~ .025eV
- Releases charge which is collected by gas tube.
- Detectors produce a distribution of electrical pulses.
- Electronics amplify the pulses, sets threshold, and converts pulses above threshold to digital pulses.



#### **Instrument Choices**



#### Passive Assay

- Used for spontaneous fission
- Count neutrons produced by sample.
- Plutonium Assay: <sup>240</sup>Pu<sub>eff</sub>
- <sup>239</sup>Pu inferred from isotopics.
- High Level Neutron Coincidence Counter (requires representative standards)
- Neutron Multiplicity Counter (applicable to wide range of material)

#### Active Assay

- Used for induced fission when there is no (small) spontaneous fission
- <sup>239</sup>Pu, <sup>235</sup>U
- Count neutrons induced by source.
- Active Well Coincidence Counter
- Uranium Neutron Coincidence Collar



#### **Correlated Pulses**



Two Pulse streams:



- Pulses from one fission event are clustered together in time.
- Pulses from unrelated events are distributed randomly in time
- We want a device to distinguish between these two different pulse steams



# Coincidence counting process







## **Neutron coincidence counting**





1 Pulse, 0 Coincidences



2 Pulses, 1 Coincidence



3 Pulses, 3 Coincidences



4 Pulses, 6 Coincidences



## **Rossi-Alpha Distribution**

Long delay

R





- Deadtime effects cause losses at early times.
- The typical length of the Predelay (P) is 2 to 4.5 ms depending on the speed of the <sup>3</sup>He tube and amplifier.





#### **Calibration Curve Method**



#### Calibration Curve Method



Need representative items for each item type and careful calibration measurements.





# **Active Neutron Coincidence Counting**



## **Spontaneous Fission**



|  | <u>Nuclide</u>    | Specific Intensity [n/(g. | <u>ss)]</u>                                                                                                                                 |
|--|-------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|  | <sup>234</sup> U  | 0.005                     |                                                                                                                                             |
|  | <sup>235</sup> U  | 0.0003                    |                                                                                                                                             |
|  | <sup>236</sup> U  | 0.0055                    |                                                                                                                                             |
|  | <sup>238</sup> U  | 0.0136                    |                                                                                                                                             |
|  | <sup>238</sup> Pu | 2590.                     |                                                                                                                                             |
|  | <sup>239</sup> Pu | 0.022                     | Uranium spontaneous fission emission rate is very small and is generally not useful for NDA except for large quantities of <sup>238</sup> U |
|  | <sup>240</sup> Pu | 1020.                     |                                                                                                                                             |
|  | <sup>241</sup> Pu | ~0.05                     |                                                                                                                                             |
|  | <sup>242</sup> Pu | 1720.                     |                                                                                                                                             |
|  | <sup>241</sup> Am | 1.18                      |                                                                                                                                             |
|  | <sup>252</sup> Cf | 2.34E+12                  |                                                                                                                                             |



# Induced Fission Los Alamos NATIONAL LABORATOR EST. 1943

- Induced fission is the primary method for uranium assay.
- Uses AmLi interrogation sources because they produce only random neutrons and have a low energy spectrum that will only induce fission in <sup>235</sup>U
- Neutron emission occurs in bursts (0-8)
- The coincidence rate is related to the <sup>235</sup>U mass.
- Coincidence rate is dependent on item properties: geometry, item composition, density.



# Active Well Coincidence Counter (AWCC)



- Designed in 1984 (Mod II)
- Assay range of few gram to several kg of <sup>235</sup>U
- Can be used in passive or active modes
- Portable
- ➤ Good efficiency 42 <sup>3</sup>He tubes
- Uses two AmLi sources for uniform interrogation
- Several cavity configurations for optimization of performance







# Sample calibration curve comparison







# Uranium Neutron Coincidence Collar Los A (UNCL)







- Used for verification of fresh fuel assemblies (BWR and PWR)
- Response cross-calibrated to an absolute calibration curve
  - Different calibration curves for BWR and PWR

